Motor patterns in human walking and running.
نویسندگان
چکیده
Despite distinct differences between walking and running, the two types of human locomotion are likely to be controlled by shared pattern-generating networks. However, the differences between their kinematics and kinetics imply that corresponding muscle activations may also be quite different. We examined the differences between walking and running by recording kinematics and electromyographic (EMG) activity in 32 ipsilateral limb and trunk muscles during human locomotion, and compared the effects of speed (3-12 km/h) and gait. We found that the timing of muscle activation was accounted for by five basic temporal activation components during running as we previously found for walking. Each component was loaded on similar sets of leg muscles in both gaits but generally on different sets of upper trunk and shoulder muscles. The major difference between walking and running was that one temporal component, occurring during stance, was shifted to an earlier phase in the step cycle during running. These muscle activation differences between gaits did not simply depend on locomotion speed as shown by recordings during each gait over the same range of speeds (5-9 km/h). The results are consistent with an organization of locomotion motor programs having two parts, one that organizes muscle activation during swing and another during stance and the transition to swing. The timing shift between walking and running reflects therefore the difference in the relative duration of the stance phase in the two gaits.
منابع مشابه
Limited Transfer of Newly Acquired Movement Patterns across Walking and Running in Humans
The two major modes of locomotion in humans, walking and running, may be regarded as a function of different speed (walking as slower and running as faster). Recent results using motor learning tasks in humans, as well as more direct evidence from animal models, advocate for independence in the neural control mechanisms underlying different locomotion tasks. In the current study, we investigate...
متن کاملInitiating Normal Walking of a Dynamic Biped with a Biologically Motivated Control
Two-legged locomotion is a much reseached topic in the robotics community since many decades. Nevertheless human walking and running is still unequaled. This paper introduces a biologically motivated approach of controlling bipeds that is based on recent results from neurological research on human walking. It features a hierarchical network of skills, motor patterns and reflexes that works loca...
متن کاملMode-dependent control of human walking and running as revealed by split-belt locomotor adaptation.
Here, we investigate the association of neural control between walking and running, and in particular, how these two gait modes at different velocities are controlled by the central nervous system. The subjects were fully adapted by acquiring modified motor patterns to either walk or run on a split-belt treadmill driven in split mode (asymmetry in the velocities of two belts at 1.0 and 2.0 m s(...
متن کاملThe effect of increasing running speed on three-dimensional changes of lower limb joint angles in open motor chain and swing phase
Objective Running is known as one of the most popular sports for which there is no time and space limit. Recently, due to lifestyle changes, the use of treadmills for walking and running has increased. However, the biomechanical differences in coordination between running on a treadmill at different speeds have not been sufficiently addressed. The aim of this study was to investigate the effect...
متن کاملDistinct Motor Strategies Underlying Split-Belt Adaptation in Human Walking and Running
The aim of the present study was to elucidate the adaptive and de-adaptive nature of human running on a split-belt treadmill. The degree of adaptation and de-adaptation was compared with those in walking by calculating the antero-posterior component of the ground reaction force (GRF). Adaptation to walking and running on a split-belt resulted in a prominent asymmetry in the movement pattern upo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 95 6 شماره
صفحات -
تاریخ انتشار 2006